G(alpha)12-mediated pathway promotes invasiveness of nasopharyngeal carcinoma by modulating actin cytoskeleton reorganization.

نویسندگان

  • Shu-Chen Liu
  • Yee-Min Jen
  • Shih Sheng Jiang
  • Junn-Liang Chang
  • Chao A Hsiung
  • Chih-Hung Wang
  • Jyh-Lyh Juang
چکیده

The molecular mechanisms behind the aggressiveness of nasopharyngeal carcinoma (NPC), a highly invasive and metastatic head and neck malignancy, have not been made clear. In this study investigating these mechanisms, guanine nucleotide-binding protein alpha(12) subunit (G(alpha)(12)) signaling was found by microarray analysis to be increased in primary NPC cells and NPC-derived cell lines. Using small interfering RNA to knock down G(alpha)(12) in NPC cells resulted in a reduction in cell migration and invasion as well as a reversal in fibroblastoid morphology. Using microarray analysis, we also found a reduction in expression of key actin dynamics regulators and several epithelial-to-mesenchymal transition-related genes in G(alpha)(12)-depleted NPC cells. Knocking down one of those genes, IQ motif containing GTPase activating protein 1, reduced the migration and formation of adherens junctions and reversed the fibroblastoid morphology of NPC cells, as knocking down G(alpha)(12) was found to do. Immunohistochemical analysis found NPC tumors to have significantly greater levels of G(alpha)(12) protein than the normal basal epithelial cells. Quantitative real-time PCR analysis revealed a significant correlation between G(alpha)(12) mRNA levels and NPC lymph node metastasis. Together, our findings support a model in which activation of G(alpha)(12) signaling promotes tumorigenesis and progression of NPC by modulating actin cytoskeleton reorganization and expression of epithelial-to-mesenchymal transition-related genes. =

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smad ubiquitination regulatory factor 2 promotes metastasis of breast cancer cells by enhancing migration and invasiveness.

Controlled protein degradation mediated by ubiquitin/proteasome system (UPS) plays a crucial role in modulating a broad range of cellular responses. Dysregulation of the UPS often accompanies tumorigenesis and progression. Here, we report that Smad ubiquitination regulatory factor 2 (Smurf2), a HECT-domain containing E3 ubiquitin ligase, is up-regulated in certain breast cancer tissues and cell...

متن کامل

B-RAF regulation of Rnd3 participates in actin cytoskeletal and focal adhesion organization.

The actin cytoskeleton controls multiple cellular functions, including cell morphology, movement, and growth. Accumulating evidence indicates that oncogenic activation of the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 (MEK/ERK1/2) pathway is accompanied by actin cytoskeletal reorganization. However, the signaling events contributing to actin cytoskeleton r...

متن کامل

Mechanical force-activated phospholipase D is mediated by Galpha12/13-Rho and calmodulin-dependent kinase in renal epithelial cells.

The renal glomerulus, the site of plasma ultrafiltration, is exposed to mechanical force in vivo arising from capillary blood pressure and fluid flow. Studies of cultured podocytes demonstrate that they respond to stretch by altering the structure of the actin cytoskeleton, but the mechanisms by which physical force triggers this architectural change and the signaling pathways that lead to gene...

متن کامل

Reorganization of the actin cytoskeleton upon G-protein coupled receptor signaling.

The actin cytoskeleton is involved in a multitude of cellular responses besides providing structural support. While the role of the actin cytoskeleton in cellular processes such as trafficking and motility has been extensively studied, reorganization of the actin cytoskeleton upon signaling by G-protein coupled receptors (GPCRs) represents a relatively unexplored area. The G-protein coupled rec...

متن کامل

Interferon α Inhibits a Src-mediated Pathway Necessary for Shigella-induced Cytoskeletal Rearrangements in Epithelial Cells

Shigella flexneri, the causative agent of bacillary dysentery, has the ability to enter nonphagocytic cells. The interferon (IFN) family of cytokines was found to inhibit Shigella invasion of cultured epithelial cells. We show here that IFN-alpha inhibits a Src-dependent signaling cascade triggered by Shigella that leads to the reorganization of the host cell cytoskeleton. Immunofluorescence st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 69 15  شماره 

صفحات  -

تاریخ انتشار 2009